Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Московский государственный университет имени М.В. Ломоносова Механико-математический факультет Кафедра газовой и волновой динамики

УТВЕРЖДАЮ
Заведующий кафедрой
___/Нигматулин Р.И./
«__10__»___июня__2019 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Наименование дисциплины (модуля):

Математические методы решения задач теории упругости

наименование дисциплины (модуля)

Уровень высшего образования: *Подготовка кадров в аспирантуре*

Направление подготовки (специальность):

01.06.01 Математика и механика

(код и название направления/специальности)

Форма обучения:

очная

Рабочая программа рассмотрена и одобрена на заседании кафедры газовой и волновой динамики (протокол № 15_, « 10 » июня_ 20_19 года)

Москва 2019

На обратной стороне титула:

Рабочая программа дисциплины (модуля) разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки специальности «Фундаментальные математика и механика», реализуемой по схеме программы специалитета в редакции приказа МГУ от 30 декабря 2016 г.

Год (годы) приема на обучение

- **1.** Место дисциплины (модуля) в структуре ОПОП ВО: *относится* κ *вариативной части ОПОП ВО*.
- **2.** Входные требования для освоения дисциплины (модуля), предварительные условия (если есть): *отсутствуют*. **3.** Результаты обучения по дисциплине (модулю), соотнесенные с требуемыми компетенциями выпускников.

Компетенции выпускников (коды)	Планируемые результаты обучения по дисциплине (модулю), соотнесенные с компетенциями
<i>VK-1</i>	Способность формулировать научно обоснованные гипотезы, создавать теоретические модели явлений и процессов, применять методологию научного познания в профессиональной деятельности.
<i>VK-2</i>	Готовность к саморазвитию, самореализации, использованию творческого потенциала.
VK-14	Способность использовать современные информационно-коммуникационные технологии в академической и профессиональной сферах
ОПК-1	Готовность использовать фундаментальные знания в области математического анализа, комплексного и функционального анализа, алгебры, линейной алгебры, аналитической геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений и уравнений в частных производных, дискретной математики, теории вероятностей, математической статистики и случайных процессов, численных методов, теоретической механики, механики сплошной среды, теории управления и оптимизации в будущей профессиональной деятельности.

ОПК-3	Способность к самостоятельной научно-исследовательской работе.
ОПК-4	Способность находить, анализировать, реализовывать программно и использовать на практике
	математические алгоритмы, в том числе с применением современных вычислительных систем.

ПК-1	Способность к самостоятельному анализу поставленной задачи, выбору корректного метода ее решения,
	построению алгоритма и его реализации, обработке и анализу полученной информации.
ПК-2	Способность к самостоятельному анализу физических аспектов в классических постановках
	математических задач и задач механики.
ПК-3	Способность к самостоятельной научно-исследовательской работе.
ПК-4	Способность находить, анализировать, реализовывать программно и использовать на практике
	математические алгоритмы, в том числе с применением современных вычислительных систем.

- 4. Формат обучения: стандартный.
- **5.** Объем дисциплины (модуля) составляет 3 з.е., в том числе 36 академических часов, отведенных на контактную работу обучающихся с преподавателем, 72 академических часов на самостоятельную работу обучающихся.
- 6. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий.

Наименование и краткое содержание раздело	ви Всего	В том числе			
тем дисциплины (модуля), Форма промежуточной аттестации по дисциплине (модулю)		Контактная работа (работа во взаимодействии с преподавателем) Виды контактной работы, часы			Самостоятельная работа обучающегося, часы
		Занятия лекционного типа*	Занятия семинарского типа*	Всего	
1. Упругость как основное свойство всех природы. Компоненты напряжений деформаций. Закон Гука. Напряжения наклонной площадке. Эллипо напряжений. Главные напряже Инварианты напряжений. Определе максимального касательного напряжения	и на оид ния.	2		2	3
2. Дифференциальные уравнения равнове Условия совместности. Определе перемещений. Уравнения равновесия перемещениях. Постановка основных за теории упругости. Пространственная зад Растяжение, кручение, изгиб призматичес и цилиндрических стержней.	ние в дач ача.	2		2	3
3. Энергия деформации. Принцип виртуаль работы. Теоремы Кастильяно и взаимнос единственности.		2		2	3

4. Плоская задача теории упругости. Круги Мора. Методы решения плоской задачи. Функция Эри. Метод разделения переменных. Решения в полиномах и рядах Фурье. Плоская задача в полярных координатах. Задача Ламе.	5	2	2	3
5. Сосредоточенная сила. Поведение решения в окрестности сингулярной точки. Задача Буссинеска. Основы метода граничных элементов	5	2	2	3
6. Применение аналитических функций. Методы Н.И. Мусхелишвили. Интеграл типа Коши	5	2	2	3
7. Осесимметричные напряжения и деформации в телах вращения. Давление между соприкасающимися телами. Контактная задача	5	2	2	3
8. Решение задач теории упругости методом интегральных преобразований.	5	2	2	3
9. Преобразование Лапласа и Фурье.	5	2	2	3
10. Текущий контроль успеваемости. Коллоквиум	5			5
11. Метод потенциала в теории упругости. Интегральные уравнения основных задач теории упругости.	5	2	2	3
12. Интегральные уравнения основных задач теории упругости.	5	2	2	3
13. Вариационные методы. Метод Рица.	5	2	 2	3
14. Построение минимизирующих последовательностей.	5	2	 2	3

15. Основы МКЭ.	5	2	2	3
16. Методы численного решения задач теории	5	2	2	3
упругости.				
17. Метод последовательных приближений.	5	2	2	3
18. Метод релаксации.	5	2	2	3
Промежуточная аттестация: экзамен (указывается форма проведения)	18			(количество часов, ** отведенных на промежуточную аттестацию)
Итого	108		 <u> </u>	

^{*}Внимание! В таблице должно быть зафиксировано проведение текущего контроля успеваемости, который может быть реализован, например, в рамках занятий семинарского типа.

**, отводимые на проведение промежуточной аттестации, выделяются из часов самостоятельной работы обучающегося

- 7. Фонд оценочных средств (ФОС) для оценивания результатов обучения по дисциплине (модулю).
- 7.1. Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости: собеседование со слушателями для оценки усвояемости материала и консультаций.

Вопросы к коллоквиуму

- 1. Упругость как основное свойство всех тел природы. Компоненты напряжений и деформаций. Закон Гука. Напряжения на наклонной площадке. Эллипсоид напряжений. Главные напряжения. Инварианты напряжений. Определение максимального касательного напряжения.
- 2. Дифференциальные уравнения равновесия. Условия совместности. Определение перемещений. Уравнения равновесия в перемещениях. Постановка основных задач теории упругости. Пространственная задача. Растяжение, кручение, изгиб призматических и цилиндрических стержней.
- 3. Энергия деформации. Принцип виртуальной работы. Теоремы Кастильяно и взаимности и единственности.
- 4. Плоская задача теории упругости. Круги Мора. Методы решения плоской задачи. Функция Эри. Метод разделения переменных. Решения в полиномах и рядах Фурье. Плоская задача в полярных координатах. Задача Ламе.
- 5. Сосредоточенная сила. Поведение решения в окрестности сингулярной точки. Задача Буссинеска. Основы метода граничных элементов
- 6. Применение аналитических функций. Методы Н.И. Мусхелишвили. Интеграл типа Коши
- 7. Осесимметричные напряжения и деформации в телах вращения. Давление между соприкасающимися телами. Контактная задача
- 8. Решение задач теории упругости методом интегральных преобразований.
- 7.2. Типовые контрольные задания или иные материалы для проведения промежуточной аттестации: собеседование со слушателями для оценки усвояемости материала и консультаций. Вопросы к экзамену.
 - 1. Упругость как основное свойство всех тел природы. Компоненты напряжений и деформаций. Закон Гука. Напряжения на наклонной площадке. Эллипсоид напряжений. Главные напряжения. Инварианты напряжений. Определение максимального касательного напряжения.
 - 2. Дифференциальные уравнения равновесия. Условия совместности. Определение перемещений. Уравнения равновесия в перемещениях. Постановка основных задач теории упругости. Пространственная задача. Растяжение, кручение, изгиб призматических и цилиндрических стержней.
 - 3. Энергия деформации. Принцип виртуальной работы. Теоремы Кастильяно и взаимности и единственности.

- 4. Плоская задача теории упругости. Круги Мора. Методы решения плоской задачи. Функция Эри. Метод разделения переменных. Решения в полиномах и рядах Фурье. Плоская задача в полярных координатах. Задача Ламе.
- 5. Сосредоточенная сила. Поведение решения в окрестности сингулярной точки. Задача Буссинеска. Основы метода граничных элементов
- 6. Применение аналитических функций. Методы Н.И. Мусхелишвили. Интеграл типа Коши
- 7. Осесимметричные напряжения и деформации в телах вращения. Давление между соприкасающимися телами. Контактная задача
- 8. Решение задач теории упругости методом интегральных преобразований.
- 9. Преобразование Лапласа и Фурье.
- 10. Текущий контроль успеваемости. Коллоквиум
- 11. Метод потенциала в теории упругости. Интегральные уравнения основных задач теории упругости.
- 12. Интегральные уравнения основных задач теории упругости.
- 13. Вариационные методы. Метод Рица.
- 14. Построение минимизирующих последовательностей.
- 15. Основы МКЭ.
- 16. Методы численного решения задач теории упругости.
- 17. Метод последовательных приближений.
- 18. Метод релаксации.

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ результатов обучения (РО) по дисциплине (модулю)							
Оценка	2	3	4	5			
РОи							
соответствующие							
виды оценочных							
средств							
Знания	Отсутствие знаний	Фрагментарные знания	Общие, но не	Сформированные			
(виды оценочных			структурированные знания	систематические знания			
средств: устные							
опросы)							
Умения	Отсутствие умений	В целом успешное, но не	В целом успешное, но	Успешное и			
(виды оценочных		систематическое умение	содержащее отдельные	систематическое умение			
средств:			пробелы умение (допускает				
практические			неточности				

контрольные задания)			непринципиального характера)	
Навыки (владения, опыт деятельности) (виды оценочных средств: выполнение и защита курсовой работы, отчет по практике, отчет по НИР)	Отсутствие навыков (владений, опыта)	Наличие отдельных навыков (наличие фрагментарного опыта)	В целом, сформированные навыки (владения), но используемые не в активной форме	Сформированные навыки (владения), применяемые при решении задач

8. Ресурсное обеспечение:

- 1. Базаров И.П. Термодинамика. Учебник. 5-е издание, стер. СПб. : Издательство «Лань», 2010. 384 с
- 2. Седов. Л.И. Механика сплошной среды Учеб.для вузов. 6-е изд., стер. СПб. : Издательство «Лань», 2004. 560 с.
- 3. Ландау Л.Д., Лифшиц Е.М. Теория упругости: Учеб.пособие. М: Наука, 1987
- 4. Новацкий В. Теория упругости. М : Изд. Мир,1975
- 5. Г. Карслоу и Д. Егер. «Теплопроводность твёрдых тел». Издательство «Наука», 1964.
- 6. А.В. Лыков. «Теория теплопроводности». Издательство «Высшая школа», 1967.
- 7. А. Б. Киселев, М. В. Юмашев. «Деформирование и разрушение при ударном нагружении. Модель повреждаемой термоупругопластической среды».
- 9. Язык преподавания: русский
- 10. Преподаватель: М.В. Юмашев
- 11. Автор (авторы) программы: М.В. Юмашев